p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C24.178D4, (C2×Q8)⋊36D4, Q8⋊D4⋊1C2, C4⋊C4.6C23, (C2×C8).7C23, Q8.40(C2×D4), (Q8×C23)⋊6C2, C4.82C22≀C2, C4.41(C22×D4), (C2×C4).223C24, C24.4C4⋊3C2, C22⋊Q16⋊11C2, (C2×Q16)⋊12C22, (C2×SD16)⋊2C22, (C2×D4).26C23, (C22×C4).420D4, C23.647(C2×D4), (C2×Q8).19C23, Q8⋊C4⋊11C22, C22.58C22≀C2, C23.38D4⋊2C2, C22⋊C8.11C22, C22⋊4(C8.C22), C4⋊D4.145C22, (C22×C4).961C23, (C23×C4).543C22, C22.483(C22×D4), C22⋊Q8.150C22, C22.19C24.15C2, C42⋊C2.95C22, (C2×M4(2)).39C22, (C22×Q8).467C22, (C2×C4).451(C2×D4), (C2×C8.C22)⋊5C2, C2.41(C2×C22≀C2), C2.10(C2×C8.C22), (C2×C4○D4).99C22, SmallGroup(128,1736)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.178D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=fbf=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e3 >
Subgroups: 660 in 369 conjugacy classes, 112 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C22⋊C8, Q8⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C23×C4, C23×C4, C22×Q8, C22×Q8, C2×C4○D4, C24.4C4, C23.38D4, Q8⋊D4, C22⋊Q16, C22.19C24, C2×C8.C22, Q8×C23, C24.178D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C8.C22, C22×D4, C2×C22≀C2, C2×C8.C22, C24.178D4
(2 30)(4 32)(6 26)(8 28)(10 18)(12 20)(14 22)(16 24)
(1 25)(2 30)(3 27)(4 32)(5 29)(6 26)(7 31)(8 28)(9 21)(10 18)(11 23)(12 20)(13 17)(14 22)(15 19)(16 24)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 13)(3 16)(4 11)(5 14)(6 9)(7 12)(8 15)(17 26)(18 29)(19 32)(20 27)(21 30)(22 25)(23 28)(24 31)
G:=sub<Sym(32)| (2,30)(4,32)(6,26)(8,28)(10,18)(12,20)(14,22)(16,24), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,13)(3,16)(4,11)(5,14)(6,9)(7,12)(8,15)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31)>;
G:=Group( (2,30)(4,32)(6,26)(8,28)(10,18)(12,20)(14,22)(16,24), (1,25)(2,30)(3,27)(4,32)(5,29)(6,26)(7,31)(8,28)(9,21)(10,18)(11,23)(12,20)(13,17)(14,22)(15,19)(16,24), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,13)(3,16)(4,11)(5,14)(6,9)(7,12)(8,15)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31) );
G=PermutationGroup([[(2,30),(4,32),(6,26),(8,28),(10,18),(12,20),(14,22),(16,24)], [(1,25),(2,30),(3,27),(4,32),(5,29),(6,26),(7,31),(8,28),(9,21),(10,18),(11,23),(12,20),(13,17),(14,22),(15,19),(16,24)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,13),(3,16),(4,11),(5,14),(6,9),(7,12),(8,15),(17,26),(18,29),(19,32),(20,27),(21,30),(22,25),(23,28),(24,31)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C8.C22 |
kernel | C24.178D4 | C24.4C4 | C23.38D4 | Q8⋊D4 | C22⋊Q16 | C22.19C24 | C2×C8.C22 | Q8×C23 | C22×C4 | C2×Q8 | C24 | C22 |
# reps | 1 | 1 | 2 | 4 | 4 | 1 | 2 | 1 | 3 | 8 | 1 | 4 |
Matrix representation of C24.178D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 9 | 13 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
15 | 16 | 0 | 0 | 0 | 0 |
5 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 15 | 16 | 4 | 9 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 11 | 0 | 9 | 1 |
15 | 16 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 8 | 4 | 1 | 15 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 8 | 16 | 6 | 13 |
G:=sub<GL(6,GF(17))| [1,13,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,9,0,0,0,16,0,13,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[15,5,0,0,0,0,16,2,0,0,0,0,0,0,0,15,0,11,0,0,0,16,4,0,0,0,13,4,0,9,0,0,0,9,0,1],[15,3,0,0,0,0,16,2,0,0,0,0,0,0,0,8,1,8,0,0,0,4,0,16,0,0,1,1,0,6,0,0,0,15,0,13] >;
C24.178D4 in GAP, Magma, Sage, TeX
C_2^4._{178}D_4
% in TeX
G:=Group("C2^4.178D4");
// GroupNames label
G:=SmallGroup(128,1736);
// by ID
G=gap.SmallGroup(128,1736);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,2019,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^3>;
// generators/relations